TESTING OF BEAM CHARACTERISTICS OF PHYSIOTHERAPY ULTRASOUND TRANSDUCERS BY ANALYZING THERMAL IMAGES

G. Žauhar^{1,3}, Đ. Smilović Radojčić², Z. Kaliman³, T. Schnurrer Luke Vrbanić^{1,4}, and S. Jurković^{1,2}

¹University of Rijeka, Medical Faculty, Department of Physics, Rijeka, Croatia

²Clinical Hospital Rijeka, Medical Physics Department, Rijeka, Croatia

³University of Rijeka, Department of Physics, Rijeka, Croatia

⁴Clinical Hospital Rijeka, Department for Physical and Rehabilitation Medicine, Rijeka, Croatia

INTRODUCTION

Effects of physiotherapy ultrasound

Quality control of ultrasonic devices is important

TESTING BEAM CHARACTERISTICS OF PHYSIOTHERAPY ULTRASOUND TRANSDUCERS

standardize method - ultrasonic pressure field mapping using hydrophones

- require a specially equipped laboratory

an alternative method -

the thermal image technique

- suitable for routine tests in clinical environment

Fig.1. Experimental set-up used in our measurements

Output Requirements for Physiotherapy Ultrasound

• effective intensity (I)- ratio of the output power (P) and the effective radiating area (A_{ER})

$$I = \frac{P}{A_{ER}}$$

- intensity of physiotherapy system is limited to 3 W/cm²
- beam non-uniformity ratio (R_{BN})- ratio of the highest intensity to the average intensity.
- \rightarrow if $R_{BN} > 8$ transducer is considered unsafe

MATERIALS AND METHODS

Materials

thermochromic tile

- ultrasound transducer
- coupling gel
- digital camera on stand
- ruler
- diffuse lighting

Methods

- capture "reference image"
- take "beam profile image" after ultrasonic exposure
- 3. determination of A_{ER} and R_{BN} using our algorithm for postprocessing of images

RESULTS

Comparison of thermal images obtained for two transducers

Fig. 2. Thermal image and horizontal beam profile image for transducer with f = 3 MHz. I = 2 W/cm². 5 s ultrasound exposure

Fig. 3. Thermal image and horizontal beam profile image for transducer with f = 3.3 MHz, I = 2 W/cm², 5 s ultrasound exposure

Beam profiles measured using different intensities for the same transducer

I / Wcm $^{-2}$	A _{ER} /cm ²	R _{BN}
1	4.51	2.96
2	4.70	2.79

Fig.4. Beam profiles measured using different nominal intensities for the same transducer with f = 1 MHz and 5 s ultrasound exposure.

Changing of thermal image and corresponding beam profiles with time after insonation

Fig 5. Changing of beam profiles with time passed after insonation for transducer with f = 3 MHz, I = 2 W/cm², 5 s ultrasound exposure

Fig 6. Changing of parameters A_{ER} and R_{BN} with time after insonation.

Changing of thermal image and corresponding beam profiles with time of ultrasound exposure

exposure /s	A _{ER} /cm ²	R _{BN}
3*	-	-
5	3.3	3.46
7	3.45	2.78

Fig. 7. Thermal images and corresponding beam profiles for different ultrasound exposure durations for transducer with f = 1 MHz, $I = 2 \text{ W/cm}^2$

^{*}Exposure duration of 3 s was too short for obtaining good quality thermal image for determination of $A_{\rm FR}$ and $R_{\rm BN}$

Conclusions

- thermal image technique can ce used for determination of beam non-unitormity ratio $R_{\rm BN}$ and effective radiating area A_{ER}
- analysis of thermal images gives relatively constant A_{ER} and $R_{\rm BN}$ values during first minute after insonation
- exposure duration of 5s was found to be optimal for transducer working at intensity 2 W/cm²