TESTING OF BEAM CHARACTERISTICS OF PHYSIOTHERAPY ULTRASOUND TRANSDUCERS BY ANALYZING THERMAL IMAGES

G. Žauhar^{1,3}, Đ. Smilović Radojčić², Z. Kaliman³, T. Schnurrer Luke Vrbanić^{1,4}, and S. Jurković^{1,2}

University of Rijeka, Medical Faculty, Department of Physics, Rijeka, Croatia Clinical Hospital Rijeka, Medical Physics Department, Rijeka, Croatia University of Rijeka, Department of Physics, Rijeka, Croatia Clinical Hospital Rijeka, Department for Physical and Rehabilitation Medicine, Rijeka, Croatia

INTRODUCTION

Effects of physiotherapy ultrasound

Quality control of ultrasonic devices is important

TESTING BEAM CHARACTERISTICS OF PHYSIOTHERAPY ULTRASOUND TRANSDUCERS

Fig.1. Experimental set-up used in our measurements

standardize method - ultrasonic pressure field mapping using hydrophones - require a specially equipped laboratory

an alternative method the thermal image technique - suitable for routine tests in clinical environment

Output Requirements for Physiotherapy Ultrasound

effective intensity (I) - ratio of the output power (P) and the effective radiating area (A_{FR})

 \triangleright intensity of physiotherapy system is limited to 3 W/cm²

beam non-uniformity ratio (R_{BN}) - ratio of the highest intensity to the average intensity.

 \triangleright if $R_{BN} > 8$ transducer is considered unsafe

MATERIALS AND METHODS

Materials

• thermochromic tile

- ultrasound transducer
- coupling gel
- digital camera on stand
- ruler
- diffuse lighting

Methods

- capture "reference image" 1.
- take "beam profile image" 2. after ultrasonic exposure
- determination of A_{FR} and 3. $R_{\scriptscriptstyle{BN}}$ using our algorithm for postprocessing of images

RESULTS

Comparison of thermal images obtained for two transducers

Fig. 3. Thermal image and horizontal beam profile image for transducer with *f* **= 3.3 MHz,** *I***=2 W/cm² , 5 s ultrasound exposure**

1 st ECMP, September 1-4, 2016, Athens-Greece 6

Beam profiles measured using different intensities for the same transducer

Fig.4. Beam profiles measured using different nominal intensities for the same transducer with *f* **= 1 MHz and 5 s ultrasound exposure.**

1st ECMP, September 1-4, 2016, Athens-Greece 7 7

Changing of thermal image and corresponding beam profiles with time after insonation

Fig 5. Changing of beam profiles with time passed after insonation for transducer with $f = 3$ MHz, *I* = 2 W/cm² , 5 s ultrasound exposure

Fig 6. Changing of parameters A_{FR} and R_{BN} with time after insonation.

Changing of thermal image and corresponding beam profiles with time of ultrasound exposure

*Exposure duration of 3 s was too short for obtaining good quality thermal image for determination of A_{ER} and R_{BN}

Conclusions

thermal image technique can ce used for determination of beam non-unitormity ratio R_{BN} and effective radiating area A_{ER}

• analysis of thermal images gives relatively constant A_{ER} and R_{BN} values during first minute after insonation

exposure duration of 5s was found to be optimal for transducer working at intensity 2 W/cm²